Panasonic ideas for life

DIGITAL FIBER SENSOR

FX-500 seres Ver. 2

C€ ©(1)"
(S)

At the industry's leading edge

Industry leading stability

Decrease the variation among fiber sensors

High stability!

"Why are the values different even for the same detection?" "If we try to forcibly unify all the display values of incident light intensity, we will not be able to read the actual changes."
SUNX focuses on the variation among fiber sensors and aims for absolute digitalization.
When the FX-500 series is used together with our super quality fiber, the incident light intensity variation among units is decreased to only $1 / 4$ of that of conventional models.
By being close to absolute values instead of modified digital values, changes in detection that could not be found in the past can now be monitored.

Specifying just one value in an operation manual is possible

In the case where multiple fiber sensors are installed under the same operating conditions, the incident light intensities are nearly identical to each other, allowing for the specification of one threshold across all sensors.

Maintenance is easy on stabilized fiber sensors

Because the incident light intensity is stable, the same threshold value can be used even when an amplifier is replaced Also, copying of settings is easy when used together with optical communication.

Stability in incident light intensity and confidence in beam adjustment
When setting up fiber sensors in a row in the same layout, all incident light intensities will display nearly identical values once beams are aligned. This helps to raise installation precision and prevent trouble from occurring before equipment is turned on.

Improved fiber coupling efficiency and suppressed variation among units

[^0]

* Illustration is image only.

New fibers developed using a new manufacturing method adopted by our own factory along with a persistent quality control system

The basic performance of a standard fiber is greatly enhanced!

Variation in emission intensity of the fiber core is controlled down to less than $\pm 10 \%$, achieving a stable detection.

Expanded temperature range
Ambient temperature $\left[-40\right.$ to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$ in previous $]$

Integrated high-precision plug

The centering precision of the fiber core attached to the inserting plug is doubled. As the insertion precision is increased, the variation among units can be greatly suppressed.
62.2 mm の 0.087 in standard fiber

In general, high-flexibility types adopt a multi-fiber core which may result in larg variation in light emission.

Bending radius [Previous is R25 mm R0.984 in]

More bendable!

Bending durability [Previous is 1,000 times]
10 million $-10,000$ imes
times more than previous
$\mathbf{t} \pm 10$
Variation in emission intensity is down to less than ± 10 \%

Under our new manufacturing method and quality control system, we have developed fiber heads that have a stabilized light emission. When used with the FX-500 amplifier a complete digital control is Super quality fiber reduces optical transmission loss to less than ± 10 \%

* For custom-ordered fibers of your required length, contact the sales office near you.

Industry leading sensing performance

Ultra high-speed \& Ultra long range detection

The exclusive detection IC combined with the high intensity beam emitted from the active coupling emission device provides the capability of offering high-speed response time over a longer sensing range, opening up new possibilities for fiber sensor detection.

Max. 25 s response time
FX-500 with its ultra high response time improves productivity.

Performing minute object detection when using a small diameter fiber is now possible with a high response time and longer sensing range.

HYPR mode incorporated

FX-500 in combination with small diameter fibers which can handle challenging detections, allows super long sensing range.

Long sensing range with small diameter fibers

Small diameter fibers with a compact head can perform long range and stable detection for minute objects.

Long sensing range even in high speed mode
A high speed response time of $25 \mu \mathrm{~s}$, which is 2.6 times more than previous, and a long sensing range are now possible in high speed mode.

Satisfying both high speed and long range

The active coupling emission device eficiciently focuses the beam through small diameter fibers

The super fine optical lens and emitting element are combined into one device enabling the beam emitted from the emitting element to be focused directly into the fiber.
Coupling efficiency is therefore increased by 50% compared to standard fiber (core ø1 mm ø0.039 in). In particular, the small diameter fibers (core $\varnothing 0.5 \mathrm{~mm} \varnothing 0.020 \mathrm{in}$) see a dramatic increase in light intensity, making challenging detections possible.

Coupling efficiency approx. 10%

Coupling efficiency approx. 20%

Coupling efficiency more than 50%

Sharp detection with suppressed hysteresis A different accuracy!
FX-500 with its accurate detection catches fractional difference in light intensity, fulfilling high precision and low-hysteresis applications.

H-02 mode
Long range detection of small objects with small difference in light intensity
FX-500 series achieves a long sensing range by its suppressed hysteresis and high intensity beam. Detection of minute objects over a long range is now more accurate compared to the past.

Long range detection of a glass target is now possible due to the ability of the sensor to detect small changes in light intensity.

H-01 mode
Highly accurate detection while avoiding saturation

Even when the received light becomes saturated, the FX-500 series cuts down hysteresis to the utmost limit in order to produce the optimal margin for detection.

Class leading form and operability

New form!

Flat display with wide viewing angle

The large and high-contrast 7-segment display of high luminance provides clear visibility from a wide angle of view.

Streamlined fiber clutch

While the conventional fiber installation is done after opening up the cover, the FX-500 series adopts a guard structure, eliminating the cover so that the fiber installation can be done in one step.

MODE NAVI + Direct setting

MODE NAVI uses three indicators and a dual display to show the amplifier's basic operations. The current operation mode can be confirmed at a glance, so even a first time user can easily operate the amplifier.

Streamlined fiber clutch

NAVI display (lights out during RUN mode)

Allows the selection of advanced functions such as timer, copy, and memory functions.

Direct setting

Threshold value can be changed during RUN mode.

A variety of functions at the industry's leading edge

Resolves variation in incident light intensity display

Display adjustment setting

Even if there is no problem in detection, the variation in display may make it difficult for an operator to verify proper operation. By using the display adjustment setting, random values can be adjusted, and the visual variation can be resolved to help define proper operation in an operation manual.

Stable detection over long and short periods Stabilized emission intensity

The "four-chemical emitting element" was first incorporated in the conventional model FX-300 to maintain a stable level of light emission and has now become an industry standard. FX-500 series continues to adopt the same emitting element as well as the "APC (Aंuto Pंower Cंontrol) circuit" which improves stability in short periods such as when the power is turned on.

Threshold tracking function

Saves maintenance time

This function seeks changes in the light emitting amount resulting from changes in the environment over long periods (such as dust levels), so that the incident light intensity can be checked at desired intervals and the threshold values can be reset automatically.

Limit teaching is performed periodically.

Automatic teaching which triggers output is performed.

Suitable for preventative maintenance
Self-diagnosis output fx.502p/|/ sosp/|,C2

FX-502(P) / 505(P)-C2 can set Output 2 as self-diagnosis output. When Output 1's threshold value teaching is carried out, Output 2 is set concurrently with the setting randomly shifted by the amount of surplus of threshold value.

- Stable sensing comparison

A variety of functions at the industry's leading edge

Stable detection while being eco-friendly

Emission power \& gain setting

For cases when the incident light intensity saturates the receiver, the light intensity can be attenuated to the optimal level by AUTO without changing the response time. This allows for stable detection while maintaining an optimal S / N ratio and saves energy by controlling the emitting electric current.

Built-in logic functions

No PLC necessary saving material and programming costs

Logical calculation functions

Three logical calculations (AND, OR, XOR), are selectable using Output 1 of multiple FX-500 series amplifiers.
APLC is not required which helps to reduce material and programming and costs.

Calculation of two neighboring amplifiers

Calculation of one amplifier and external input FX -502(P)/505(P)-C2

Equipped with 5 types timers

A wide variety of timer control operations can be carried out by these fiber sensors alone.

Analog control is possible

Analog output cable type
 Exsosspece

A 4 to 20 mA analog output represents the digital value of incident light intensity

■ Edge tracking of film or sheet

Drifting path can be tracked as the light intensity changes.

8 data banks

Smooth setup changes

The number of data banks used for saving the setup conditions of the amplifier is increased to eight. Setup conditions can be saved and loaded to make setup changes easy at worksite that manufactures multiple models.

External input
Remote control improves work efficiency ssenp ssoper

[^1]
Selectable interference prevention

In addition to the automatic interference prevention function which is enabled through the optical communication of cascade connected amplifiers, an alternate frequency interference prevention function is also incorporated. So even for layouts where optical communication cannot be carried out, switching of emission frequencies allows interference prevention.

No need to specify a main unit or sub unit

All FX-500 amplifiers can be used as either a main unit or a sub unit. Just use a main cable or a sub cable to distinguish the two. This reduces the costs of inventory management.

- PRO mode functions

PRO1	Response time setting
	Timer setting
	Hysteresis setting
	Shift amount setting
	Emission power setting
	Timer range setting
PRO2	Teaching lock setting
	Digital display item setting
	Digital display turning on setting
	ECO setting
	Period hold setting
PRO3	Data bank loading setting
	Data bank saving setting
	Back up setting
	Input / output setting *1
PRO4	Copy setting
	Copy action setting
	Copy lock setting
	Communication protocol setting
	External input setting ${ }^{\text {* }}$

An optical communication function allows sensors to be adjusted simultaneously

The optical communication function allows the data that is currently set to be copied and saved all at once for all amplifiers connected together from the right side. This greatly reduces troublesome setup tasks and makes setup much smoother.

Wire-saving, space-saving

The quick-connection cables enable reduction in wiring. The connections and man-hours required for the relay terminal block setup can be reduced and valuable space is saved.

[^2] 6: FX-501(P) can do a part of operations.

ORDER GUIDE

Amplifiers Quick-connection cable is not supplied with FX-501(P) and FX-502(P). Please order it separately.

Type	Appearance	Model No.	Emitting element	Output	External input
		FX-501	Red LED	NPN open-collector transistor	
		FX-501P		PNP open-collector transistor	
$\begin{aligned} & 00 \\ & \stackrel{y}{2} \\ & \vdots \\ & \vdots \\ & \stackrel{2}{3} \\ & \stackrel{0}{N} \\ & \hline \end{aligned}$		FX-502		NPN open-collector transistor 2 outputs	Incorporated (Switchable with Output 2)
		FX-502P		PNP open-collector transistor 2 outputs	
$\begin{aligned} & \stackrel{0}{2} \\ & \frac{2}{2} \\ & \frac{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		FX-505-C2		NPN open-collector transistor 2 outputs analog output	Incorporated
		FX-505P-C2		PNP open-collector transistor 2 outputs analog output	

Quick-connection cables
For FX-501(P) Quick-connection cable is not supplied with the amplifier. Please order it separately.

Type	Model No.		Description	Main cable - CN-73-C口	
Main cable (3-core)	CN-73-C1	Length: 1 m 3.281 ft	$0.15 \mathrm{~mm}^{2}$ 3-core cabtyre cable, with connector on one end Cable outer diameter: $\varnothing 3.0 \mathrm{~mm} \varnothing 0.118$ in	Sub cable	s à
	CN-73-C2	Length: 2 m 6.562 ft			
	CN-73-C5	Length: 5 m 16.404 ft			
Sub cable (1-core)	CN-71-C1	Length: 1 m 3.281 ft	$0.15 \mathrm{~mm}^{2}$ 1-core cabtyre cable, with connector on one end Cable outer diameter: $\varnothing 3.0 \mathrm{~mm} \varnothing 0.118$ in Connectable to a main cable up to 15 cables.	- CN-71-C■	
	CN-71-C2	Length: 2 m 6.562 ft			
	CN-71-C5	Length: 5 m 16.404 ft			

For FX-502(P) Quick-connection cable is not supplied with the amplifier. Please order it separately.

End plates End plates are not supplied with the amplifier. Please order them separately when the amplifiers are mounted in cascade.

Appearance	Model No.	Description

OPTIONS

Amplifier mounting bracket

- MS-DIN-2

Amplifier protection seal

- FX-MB1

10 sets of 2 communication window seals and 1 connector seal

SPECIFICATIONS

Type		Standard type	2-output type	Cable type	
	NPN output	FX-501	FX-502	FX-505-C2	
Ite	PNP output	FX-501P	FX-502P	FX-505P-C2	
Supply voltage		12 to $24 \vee \mathrm{DC}_{-15}^{+10} \%$ Ripple P-P 10% or less			
Power consumption		Normal operation: 960 mW or less (current consumption 40 mA or less at 24 V supply voltage, excluding analog output of cable type) ECO mode: 680 mW or less (current consumption 28 mA or less at 24 V supply voltage, excluding analog output of cable type)			
Output (2-output type and cable type: Output 1, Output 2)		<NPN output type> NPN open-collector transistor - Maximum sink current: 100 mA (2-output type and cable type are 50 mA) (Note 2) - Applied voltage: 30 V DC or less (between output and 0 V) - Residual voltage: 2 V or less (Note 3) (at maximum sink current) <PNP output type> PNP open-collect - Maximum sour (2-output type - Applied voltage - Residual voltage:		transistor current: 100 mA nd cable type are 50 mA) (Note 2) 30 V DC or less (between output and +V) V or less (Note 3) (at maximum source current)	
	Output points	1 point	2 points		
	Output operation	Switchable either Light-ON or Dark-ON by L/D mode			
	Short-circuit protection	Incorporated			
Response time		H-SP: 25μ s or less, FAST: 60μ or less, STD: 250μ s or less, LONG: 2 ms or less, U-LG: 4 ms or less, HYPR: 24 ms or less, selectable			
Analog output (Cable type only)		Output current: 4 to 20 mA approx. [H-SP, FAST STD: At 0 to 4,000 digits, LONG: At 0 to 8,000 digits (Note 4)], Response time: 2 ms or less, Zero point: Within $4 \mathrm{~mA} \pm 1$ \% F.S., Span: Within $16 \mathrm{~mA} \pm 5$ \% F.S., Linearity: Within ± 3 \% F.S., Load resistance: 0 to 250Ω			
External input (2-output type only, switchable with Output 2)			<NPN output type> NPN non-contact input - Signal condition High: +8 V to +V DC or Open Low: 0 to +1.2 V DC (at 0.5 mA source current) - Input impedance: $10 \mathrm{k} \Omega$ approx.	<PNP output type> PNP non-contact input - Signal condition High: +4 V to +V DC (at 3 mA sink current) Low: 0 to +0.6 V DC or Open - Input impedance: $10 \mathrm{k} \Omega$ approx.	
Possible external input function			Emission halt / Teaching (Full-auto, Limit, 2-point) / Logic operation setting / Copy lock / Display adjustment / Data bank load / Data bank save, selectable		
Sensitivity setting		2-point teaching / Limit teaching / Full-auto teaching / Manual adjustment			
Incident light intensity display range		H-SP / FAST / STD: 0 to 4,000, LONG: 0 to 8,000, U-LG / HYPR: 0 to 9,999			
Timer function		Incorporated with variable OFF-delay / ON-delay /ONE SHOT / ON-delay • OFF-delay / ON-delay • ONE SHOT timer, switchable either effective or ineffective	<Output 1> Incorporated with variable OFF-delay / ON-delay /ONE SHOT / ON-delay • OFF-delay / ON-delay • ONE SHOT timer, switchable either effective or ineffective		
		<Output 2> Incorporated with variable OFF-delay / ON-delay /ONE SHOT timer, switchable either effective or ineffective			
	Timer period		Timer range "ms": 0.5 ms approx., 1 to $9,999 \mathrm{~ms}$ approx., 1 ms approx., Timer range "sec.": 0.5 s approx., 1 to 32 s approx., 1 s approx., Timer range " $1 / 10 \mathrm{~ms}$ ": 0.05 ms approx., 0.1 to 999.9 ms approx., 0.1 ms approx., each output is set individually		
Light emitting amount selection function		Incorporated, 3 levels (each level 25 to 100%) + Auto setting [1 level (25 to 100%) when using H-SP mode]			
Interference prevention function		Incorporated (Note 5), selectable either automatic interference prevention or different frequency			
Various settings		Hysteresis setting / Shift amount setting / Emission power setting / Display turning setting / ECO setting / Data bank loading saving setting / Copying setting / Code setting / Reset setting / Logical calculation setting / Threshold tracking setting, etc.			
Protection		IP40 (IEC)			
Ambient temperature		-10 to $+55^{\circ} \mathrm{C}+14$ to $+131^{\circ} \mathrm{F}$ [ff 4 to 7 units are mounted in cascade: -10 to $+50^{\circ} \mathrm{C}+14$ to $+122{ }^{\circ} \mathrm{F}$ or if 8 to 16 units (cable type: 8 to 12 units) are mounted in cascade: -10 to $+45^{\circ} \mathrm{C}+14$ to $+113^{\circ} \mathrm{F}$ (N (dew condensation or icing allowed), Storage: -20 to $+70^{\circ} \mathrm{C}-4$ to $+158^{\circ} \mathrm{F}$			
Emitting element (modulated)		Red LED (Peak emission wavelength: 643 nm 0.025 mil)			
Material		Enclosure, Case cover: Polycarbonate, Switch: Polyacetal			
Cable		-		$0.2 \mathrm{~mm}^{2} 6$-core cabtyre cable, 2 m 6.562 ft long	
Cable extension				Extension up to total 100 m 328.084 ft is possible with $0.3 \mathrm{~mm}^{2}$, or more, cable. (however, supply voltage 12 V DC)	
Weight		Net weight: 15 g approx., Gross weight: 70 g approx.		Net weight: 60 g approx., Gross weight: 100 g approx.	
Accessory		FX-MB1 (Amplifier protection seal): 1 set			

Notes: 1) Where measurement conditions have not been specified precisely, the conditions used were an ambient temperature of $+23^{\circ} \mathrm{C}+73.4^{\circ} \mathrm{F}$
2) 50 mA max. if 5 or more standard types are connected together. (25 mA in case of 2-output type and cable type)
3) In case of using the quick-connection cable (cable length 5 m 16.404 ft) (optional).
4) If display adjustment was conducted, it is not in this range.
5) Number of sensor heads which is possible to be mounted closely in auto interference prevention function depends on response time as shown in table below. Number of sensor heads which is possible to be mounted closely in different frequency Interference prevention function is up to 3 units.

- Number of sensor heads mountable closely (Unit: set)

Response time	H-SP	FAST	STD	LONG	U-LG	HYPR
IP-1	0	2	4	8	8	12

I/O circuit diagram Terminal No.

Notes: 1) The quick-connection sub cable does not have $+V$ (brown) and 0 V
(blue). The power is supplied from the connector of the main cable.
2) 50 mA max., if five amplifiers, or more, are connected together.

Note: The quick-connection sub cable does not have brown lead wire and blue lead wire.

Terminal arragement diagram

PNP output type

Note: The quick-connection sub cable does not have brown lead wire and blue lead wire.

Terminal arragement diagram

FX-502

Notes: 1) The quick-connection sub cable does not have +V (brown) and 0 V (blue). The power is supplied from the connector of the main cable. 2) 25 mA max., if five amplifiers, or more, are connected together.

Note: The quick-connection sub cable does not have brown lead wire and blue lead wire

Terminal arragement diagram

FX-502P
I/O circuit diagram Terminal No.

Notes: 1) The quick-connection sub cable does not have +V (brown) and 0 V (blue). The power is supplied from the connector of the main cable.
2) 25 mA max., if five amplifiers, or more, are connected together.

PNP output type
Wiring diagram

Note: The quick-connection sub cable does not have brown lead wire and blue lead wire.

Terminal arragement diagram

FX-505-C2

I/O circuit diagram

Internal circuit \longleftrightarrow User's circuit

Wiring diagram

FX-505P-C2
PNP output type

I/O circuit diagram

Internal circuit \longleftrightarrow User's circuit

Wiring diagram

Threaded																			Supe	quality				${ }_{\substack{1 \\ \hline 1 \\ \hline}}$			
Reflective（Note 2）						Thru－beam										Reflective（Note 2）				Thru－beam							
		M3				M14				M4				M3		$\begin{array}{\|c\|} \hline \text { Cylindrical } \\ \hline ø 3 \\ \hline \end{array}$	Threaded			Cylindrical		Threaded					
Ulitra－sma	I diameter					Long range	Squa	re head	Elbow					M6 M4	M3		ø3	ø1．5	M4 M3								
																					$\begin{aligned} & \frac{1}{\frac{1}{4}} \\ & \frac{\sqrt{6}}{1} \end{aligned}$						
$\begin{aligned} & \underset{\sim}{n} \\ & \stackrel{\dot{W}}{\mathbf{~}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\eta} \\ & \stackrel{\oplus}{\omega} \\ & \text { W } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\tilde{\omega}} \\ & \text { مِ } \\ & \times \end{aligned}$		$\begin{aligned} & \underset{\sim}{\omega} \\ & \stackrel{\mu}{\Sigma} \end{aligned}$		$\frac{7}{\hat{A}}$		$\begin{aligned} & \frac{\pi}{\lambda} \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$		$\begin{aligned} & \frac{\pi}{1} \\ & \stackrel{H}{x} \end{aligned}$	$\begin{aligned} & \frac{\pi}{1} \\ & \stackrel{N}{\Sigma} \end{aligned}$		$\frac{\pi}{\hat{\omega}}$	$\begin{aligned} & \underset{\sim}{\omega} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$	贸范		꿍					$\frac{\pi}{2} \frac{\theta}{6}$	궁	2			
		刃		0					（e）	召	$\underset{\sim}{0}$			$\underset{\sim}{0}$													
			${ }_{3}^{N X}$			$\vec{o}_{3} \boldsymbol{x}$	${ }_{3}{ }^{\text {W }}$			$\stackrel{\rightharpoonup}{3}$	${ }_{3} \times$					${ }_{3}$									$\frac{8}{6} \frac{\square}{6}$		
$\text { 엉 } \mathrm{O}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\circ}{\circ}} \stackrel{+}{\infty}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \end{aligned}$		$\stackrel{\omega}{\stackrel{\omega}{\mathrm{H}}}{ }_{\circ}^{\infty}$	枵		$\begin{aligned} & \mathscr{\circ} N \\ & \stackrel{N}{\dot{\circ}} \end{aligned}$			$\begin{aligned} & \text { A } \\ & \text { N } \\ & \text { In } \end{aligned}$	$\stackrel{\stackrel{\omega}{\stackrel{\rightharpoonup}{\circ}} \stackrel{0}{\infty}}{\infty}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{*}} \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\omega}} \\ & \stackrel{\infty}{\infty} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \underset{\sim}{\omega} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\omega}{\omega}} \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \stackrel{1}{4} \end{aligned}$	응ㅇ	$\begin{aligned} & \text { No } \\ & \text { A } \\ & \text { No } \end{aligned}$			$\begin{aligned} & \text { A } \\ & \text { Ñ } \\ & \text { ث } \end{aligned}$		$\begin{aligned} & \text { A } \\ & \text { N} \\ & \ddagger O_{0} \end{aligned}$	$\stackrel{\rightharpoonup}{4}$		｜res		

Notes：1）Note that the sensing range of the free－cut type fiber may be reduced by 20% max．
depending upon how the fiber is cut．
2）The sensing range is specified for white non－glossy paper
3）The fiber cable length practically limits the sensing range．
4）The allowable cutting range is 700 mm 27.559 in from the end that the amplifier inserted．

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
2) The fiber cable length practically limits the sensing range.
3) Bending radius of sleeve part is $R 10 \mathrm{~mm}$ or more.

[^3]

	Type	Shape of fiber head (mm)	Model No.	Bending radius (mm)	Fiber cable length Free-cut (Note 1)	Sensing range FX-500 STD mode $(\mathrm{mm} \mathrm{in})$
	$\begin{aligned} & \text { E } \\ & \text { ® } \\ & \text { D } \\ & \stackrel{0}{0} \\ & \vdots \end{aligned}$		Tough FT-A32	R2 Bending durability	$\begin{aligned} & 8 \times \\ & 2 \mathrm{~m} \end{aligned}$	$\begin{gathered} 3,600 \\ 141.732 \\ \text { (Note 3) } \end{gathered}$
			FT-A32W	R1		
		$\int_{1}^{\text {Sensing width }} \frac{112 \times \mathrm{m} 1 \times \mathrm{D} 13.5}{10}$	Tough FT-A11	R2 Bending durability		
		Allows flexible wiring	FT-A11W	R1		
	$\frac{\text { तon }}{\frac{\pi}{4}}$		Tough FT-AL05	R2 Bending durability		$\begin{gathered} 860 \\ 33.858 \end{gathered}$
		$\mathrm{W}_{7} \times \mathrm{H} 15 \times \mathrm{D} 30$	Tough FD-A16	R4 Bending durability		$\begin{gathered} 200 \\ 7.874 \end{gathered}$
	$\frac{\text { त }}{\frac{\pi}{4}}$		Tough FD-AL11	R2 Bending durability		$\begin{gathered} 320 \\ 12.598 \end{gathered}$
			FD-L32H	R4 Bending durability	$\begin{aligned} & x \\ & 4 \mathrm{~m} \end{aligned}$	$\begin{gathered} 0 \text { to } 56 \\ 0 \text { to } 2.205 \end{gathered}$
		Alignment	Tough FD-L30A	R2 Bending durability	$\begin{aligned} & x \\ & 3 \mathrm{~m} \end{aligned}$	$\begin{gathered} 0 \text { to } 43 \\ 0 \text { to } 1.693 \end{gathered}$
			Tougb FD-L31A			$\begin{gathered} 4 \text { to } 33 \\ 0.157 \text { to } 1.299 \end{gathered}$
			Tough FD-L22A	R2 Bending durability	$\begin{aligned} & x \\ & 2 \mathrm{~m} \end{aligned}$	$\begin{gathered} 0 \text { to } 24 \\ 0 \text { to } 0.945 \end{gathered}$
			Tough FD-L23		$\begin{aligned} & x \\ & 3 \mathrm{~m} \end{aligned}$	$\begin{gathered} 0 \text { to } 29 \\ 0 \text { to } 1.142 \end{gathered}$
			Tough FD-L11		$\begin{aligned} & x \\ & 2 \mathrm{~m} \end{aligned}$	$\begin{gathered} 0 \text { to } 9.5 \\ 0 \text { to } 0.374 \end{gathered}$
			Tough FD-L10			$\begin{gathered} 0 \text { to } 5 \\ 0 \text { to } 0.197 \end{gathered}$
			Tough FD-L21	R2 Bending durability		$\begin{gathered} 1.5 \text { to } 16 \\ 0.059 \text { to } 0.630 \end{gathered}$
			FD-L21W	R1		$\begin{gathered} 3 \text { to } 14 \\ 0.118 \text { to } 0.551 \end{gathered}$
			Tough FD-L20H	R2 Bending durability		$\begin{gathered} 23 \\ 0.906 \end{gathered}$
			FD-L12W	R1	$\frac{8}{1 m}$	$\begin{gathered} 8 \\ 0.315 \end{gathered}$
			FR-250HW	R1	$\begin{aligned} & x \\ & 2 \mathrm{~m} \end{aligned}$	$\begin{gathered} 100 \text { to } 990 \\ 3.937 \text { to } 38.976 \end{gathered}$
			Tough FR-KZ22E	R2 Bending durability		$\begin{gathered} 15 \text { to } 310 \\ 0.591 \text { to } 12.205 \end{gathered}$
	Narrow beam		Tougb FR-KZ50H			20 to 300
		$\prod_{\text {W28 } \times \text { H10.6 } \times \text { D10.1 }}^{\text {W9. } \times \text { H2 }}$	Tougb FR-KZ50E			0.787 to 11.811
Notes	1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut. 2) The sensing range is specified for white non-glossy paper. 3) The fiber cable length practically limits the sensing range. 4) The sensing range is the possible setting range for the attached reflector. The fiber can detect an object less than setting range for the reflector. 5) The sensing range is specified for transparent glass $100 \times 100 \times 10.7 \mathrm{~mm} 3.937 \times 3.937$ \times t0.028 in (FD-L32H: R edge, FD-L21 and FD-L21W: t2 mm to. 0.079 in) (FD-L20H: white non-glossy paper, FD-L10: silicon wafers $100 \times 100 \mathrm{~mm} 3.937 \times 3.937 \mathrm{in}$).					

	Type			Shape of fiber head (mm)	Model No.	Bending radius (mm)	Fiber cable length Free-cut (Note 1)	Sensing range FX-500 STD mode $(\mathrm{mm}$ in $)$	
					FT-H30-M1V-S (Note 9)	R18	1 m	$\begin{gathered} 270 \\ 10.630 \end{gathered}$	
					FD-H30-KZ1V-S (Note 9)			$\begin{gathered} 20 \text { to } 200 \\ 0.787 \text { to } 7.874 \end{gathered}$	
				$300^{\circ} \mathrm{C}$, Glass substrate detection W19 $\times \mathrm{H} 5 \times \mathrm{D} 27$ 10	FD-H30-L32V-S (Note 9)		3 m	$\begin{gathered} 8 \\ 0.315 \end{gathered}$	
			$\stackrel{ \pm}{\Sigma}$		FT-41	R25	$\begin{aligned} & x \\ & 2 \mathrm{~m} \end{aligned}$	$\begin{gathered} 1,100 \\ 43.307 \end{gathered}$	
			$\stackrel{ \pm}{ \pm}$		FD-G40			$\begin{gathered} 140 \\ 5.512 \end{gathered}$	
			$\stackrel{\ominus}{\sum}$		FD-G60			$\begin{gathered} 420 \\ 16.535 \end{gathered}$	
	Type			Shape of fiber head (mm)	Model No.	Bending radius (mm)	Fiber cable length Free-cut (Note 1)	Sensing range	
				FX-500 STD mode (mm in)					
						FD-F8Y	Protective tube R40 Fiber R15	$\begin{gathered} \frac{\alpha}{x} \\ 2 \mathrm{~m} \\ \text { (Note 10) } \\ \hline \end{gathered}$	Liquid surface not contacted: Beam received, Liquid surface contacted: Beam not received
					FD-HF40Y FD-F41Y	Protective tube R20 Fiber R10	$\frac{8 x}{2 m}$		
					Tough FD-F71	R4 Bending durability	$\frac{8}{5 \mathrm{~m}}$	Leak absent: Beam received, Leak present: Beam interrupted	
					FD-F41 FD-F4	R10	$\frac{8 x}{2 m}$	Leak absent: Beam received, Leak present: Beam interrupted	
				Mountable on pipe-array fiber	$\begin{aligned} & \text { Tough } \\ & \text { FD-FA93 } \end{aligned}$	R4 Bending durability			
					Tough FT-F93	Protective tube R20 Fiber R2 Bending durability		Liquid absent: Beam not received, Liquid present: Beam received	

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
The fiber cable length practically limits the sensing range
3) The allowable cutting range is 500 mm 19.685 in from the end that the amplifier inserted
4) Heat-resistant side fiber + ordinary temperature fiber (FT-FM2, From production since October, 2012: FT-42) are sold together as a set.
5) R25 mm R0. 984 in or more for ordinary temperature side.
6) Fiber length (fixed-length) for heat-resistant fiber side. Fiber length for ordinary
7) Thperaur (ide is 2 (ree-cut)
7) The sensing range of reflective type is the value for white non-glossy paper (50×50 $\mathrm{mm} 1.969 \times 1.969$ in glass substrate for FD-H30-L32, FD-H18-L31, transparent glass $100 \times 100 \times \mathrm{t} 0.7 \mathrm{~mm} 3.937 \times 3.937 \times \mathrm{t} 0.028$ in for FD-H25-L43 and FD-H25-L45).
8) The sensing range of reflective type is the value for transparent glass $100 \times 100 \times t 0.7$
) Sold as a
(FV-BR1) + fiber at tmospheric side (FT-J8)
10) The allowable cutting range is $1,000 \mathrm{~mm} 39.370$ in from the end that the amplifier inserted.

PRECAUTIONS FOR PROPER USE

- Never use this product as a sensing device
for personnel protection.
- In case of using sensing devices for
personnel protection, use products which
meet laws and standards, such as OSHA,
ANSI or IEC etc., for personnel protection
applicable in each region or country.

Wiring

- Make sure that the power supply is OFF while adding or removing the amplifiers.
- Note that if a voltage exceeding the reted range is applied, or if an AC power supply is directly connected, the product may get burnt or damaged.
- Note that short-circuit of the load or wrong wiring may burn or damage the product.
- Do not run the wires together with high-voltage lines or power lines, or put them in the same raceway. This can cause malfunction due to induction.
- Verify that the supply voltage variation is within the rating.
- If power is supplied from a commercial switching regulator, ensure that the frame ground (F.G.) terminal of the power supply is connected to an actual ground.
- In case noise generating equipment (switching regulator, inverter motor, etc.) is used in the vicinity of this product, connect the frame ground (F.G.) terminal of the equipment to an actual ground.
- Make sure to use the quick-connection cable (optional) for the connection of the controller. Extension up to total 100 m 328.084 ft is possible with $0.3 \mathrm{~mm}^{2}$ or more, cable.
However, in order to reduce noise, make the wiring as short as possible.
- Make sure that stress by forcible bending or pulling is not applied to the sensor cable joint and fiber cable.

Others

- This product has been developed / produced for industrial use only.
- The specification may not be satisfied in a strong magnetic field.
- The ultra long distance (U-LG, HYPR) mode is more likely to be affected by extraneous noise since the sensitivity of that is higher than the other modes. Make sure to check the environment before use.
- Do not use during the initial transient time (H-SP, FAST, STD: $0.5 \mathrm{sec} .$, LONG, U-LG, HYPR: 1 sec.) after the power supply is switched ON.
- This product is suitable for indoor use only.
- Avoid dust, dirt, and steam.
- Make sure that the product does not come in contact with oil, grease, organic solvents such as thinner, etc., strong acid or alkaline.
- This product cannot be used in an environment containing inflammable or explosive gases.
- Never disassemble or modify this product.
- This product adopts EEPROM. Settings cannot be done 100 thousand times or more because of the EEPROM's lifetime.

Disclaimer

The applications described in the catalog are all intended for examples only.
The purchase of our products described in the catalog shall not be regarded as granting of a license to use our products in the described applications.
We do NOT warrant that we have obtained some intellectual properties, such as patent rights, with respect to such applications, or that the described applications may not infringe any intellectual property rights, such as patent rights, of a third party.

Notes: 1) FX-502(P) only
2) $\mathrm{FX}-501(\mathrm{P})$: Operation indicator
3) FX-501(P): 3-pin, FX-502(P): 4-pin
CN-73-C \square_{\square} CN-74-C $\square \quad$ Main cable (Optional)

- Length L

Model No.	Length L	
CN-73/74-C1	1,000	39.370
CN-73/74-C2	2,000	78.740
CN-73/74-C5	5,000	196.850

Notes: 1) CN-74-C \square only
2) CN-73-C \square : 3-core

MS-DIN-2
 Amplifier mounting bracket (Optional)

Material: Cold rolled carbon steel (SPCC)
(Uni-chrome plated)

Note: The shape of setting switch and cable will be changed from production at the end of November, 2011. Please see drawing below.

- Length L

Model No.	Length L	
CN-71/72-C1	1,000	39.370
CN-71/72-C2	2,000	78.740
CN-71/72-C5	5,000	196.850

2) CN-71-Ca: 1-core

Material: Polycarbonate

Introduction of Related Products

Communication Unit for Open Network
SC-GU3 series
The digital sensor can be connected directly to the 3 types of open network!
Other types of analog input sensors can also be connected!

Scattered digital sensors can be centrally managed and set through an open network.

| Applicable | Digital Fiber Sensor
 Digital Sensor | FX-501 FX-502 | Digital Laser Sensor |
| :---: | :---: | :---: | :---: | | Digital Pressure Sensor |
| :---: |
| FS-403 |\quad DPS-401 DPS-402

[^0]: in each unit we have accurately aligned the central axis of the fiber with the central axis of the emitted light, which creates a high coupling efficiency that helps to reduce variation among units.

[^1]: Work efficiency can be improved by operating via a PLC output or other external signal.
 (FX-502(P) can operate via external signal when switching from Output 2 to external input.)

 Functions operable by external input

 | Full-auto / Limit / 2-point teaching | Display adjustment setting |
 | :--- | :--- |
 | Data bank load / save | Logical calculation (self-unit only) |
 | Emission halt | Copying function lock (self-unit only) |

[^2]: 4: Output 2 only of FX-502(P) and FX-505(P)-C2 *5: Output 2 only of FX-505(P)-C2

[^3]: Note: Spot diameter and distance to focal point are specified for FX-500/FX-100 series.

